• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Precision Audio & Tint

Thomasville: (229) 233 5001Bainbridge: (229) 246 2111
  • NEW! SHOP ONLINE
  • Financing/Lease to Own
    • Easy Payments, No Credit Needed
    • $0 Down, 0% APR Financing
  • Our Work
  • Reviews
  • Facebook
  • Instagram
  • Request a Quote
  • About Us
    • Why Choose Us
    • Hours and Directions
    • Our Facilities
    • Virtual Tour Bainbridge Store
    • Virtual Tour Thomasville Store
    • Work for US
    • Gift Cards
    • Contact Us
  • Services
    • Car Audio
      • Backup Safety
      • Mobile Video
      • OEM Integration
      • Professional Installation
      • Smartphone Integration
      • Vehicle Navigation
    • Marine Audio
    • Motorcycle Audio
    • Remote Starters
    • Wheels & Tires
  • Window Tint
  • Customize Your Truck
    • Bed Covers
    • Floor Liners And Accessories
    • Grille Guards And Bumpers
    • Hitches
    • Leveling and Lift Kits
    • Jeep Parts And Accessories
    • Step Bars And Running Boards
    • Toolboxes
  • Brands
    • JL Audio
    • Kenwood
    • Pioneer
    • Fuel Wheels
    • Llumar Window Tint
    • Rockford Fosgate
    • Cam-Locker
    • Ranch Hand
    • Rough Country
    • WeatherTech
You are here: Home / ARTICLES / Everything You’ve Wanted to Know About Audio Distortion – Part 1

Everything You’ve Wanted to Know About Audio Distortion – Part 1

By BestCarAudio.com Leave a Comment

DistortionWhen we talk about any signal, be it audio, video or data, there is an accompanied reality for alterations and errors made to that signal as it passes through different electronic components, conductors or magnetic fields. While we get concerned when we hear that a component introduces distortion or when we read distortion specifications, distortion is part of nature and is simply unavoidable. Until any distortion reaches a significant level in an analog signal, it can’t be heard or seen.

Starting With A Foundation in Audio Distortion

With that in mind, let’s create a foundation for observing and understanding the properties of an audio signal in the electrical and frequency domains. This information will serve as the foundation for understanding distortion in part two of this article.

Any signal, be it Direct Current (DC) or Alternating Current (AC), can be analyzed in two ways – in its time domain or frequency domain. Understanding the difference between these two observation domains will dramatically simplify the life of anyone involved in the mobile electronics industry.

When we observe a signal in the time domain, we are looking at the amplitude of the signal relative to time. Normally, we would use a voltmeter or oscilloscope to look at signals in the time domain. When we consider a signal in the frequency domain, we are comparing the amplitude (or strength) of individual frequencies, or groups of frequencies within the signal. We use an RTA (real time analyzer) on a computer or handheld/benchtop devices to look at the frequency domain.

Direct Current

When analyzing the amplitude of an electrical signal, we compare the signal to a reference; in 99% of applications, the reference is known as ground. For a DC signal, the voltage level remains constant with respect to the ground reference and to time. Even if there are fluctuations, it is still a DC signal.

If you were to chart the frequency content of a DC signal, you would see it is all at 0 hertz (Hz). The amplitude does not change relative to time.

Let’s consider the DC battery voltage of your car or truck. It is a relatively constant value. Regarding amplitude versus time, it sits around a 12.7-12.9 volts on a fully charged battery with the vehicle off. When the vehicle is running and the alternator is charging, this voltage increases to around 13.5 to 14.3 volts. This increase is caused because the alternator is feeding current back into the battery to charge it. If the voltage produced by the alternator was not higher than the resting voltage of the battery, current would not flow and the battery would not be recharged.

Alternating Current

AC Signal – Time

DistortionIf we look at an AC signal, such as a 1 kHz tone that we would use to set the sensitivity controls on an amplifier, we see something very different. In the case of a pure test tone like this, the waveform has a sinusoidal shape, called a sine wave. If we look at a sine wave on an oscilloscope, we see a smoothly rolling waveform that extends just as much above our reference voltage as it does below.

AC Signal – Frequency

DistortionIt is now wise to look at this same signal from the perspective of the frequency domain. The frequency domain graph will, if there is no distortion, show a single frequency. In consideration of an audio signal, the amplitude (or height) of that frequency measurement depends on how loud that single frequency is relative to the limits of our recording technology or measurement device.

Audio

When we listen to someone speak or play a musical instrument, we hear many different frequencies at the same time. The human brain is capable of decoding the different frequencies and amplitudes. Based on our experiences, and the differences in frequency and time response between one ear and the other, we can determine what we are hearing, and the location of the sound relative to ourselves.

Analyzing the time domain content of an audio signal is relatively easy. We would use an oscilloscope to observe an audio waveform. The scope will show us the signal voltage versus time. This is a powerful tool in terms of understanding signal transmission between audio components.

A Piano Note

Middle C – Time

DistortionLet’s look at the amplitude and frequency content of a sound most of us know well. The following graph is the first 0.25 seconds of a recording of a piano’s middle C (C4) note in the time domain. This represents the initial hit of the hammer onto the string. If you look at the smaller graph above the larger one, you will see the note extends out much further than this initial .25 second segment.

Middle C – Frequency

DistortionWe know that the fundamental frequency of this note is 261.6 Hz, but if you look at the frequency domain graphs, we can see that several additional and important frequencies are present. These frequencies are called harmonics. They are multiples of the fundamental frequency, and the amplitude of these harmonics is what makes a small upright piano sound different from a grand piano, and from a harp or a guitar. All of these instruments have the same fundamental middle C frequency of 261.6 Hz; their harmonic content makes them sound different. In the case of this piano note recording, we can see there is a large spike at 523 Hz, then increasingly smaller spikes at 790 Hz, 1055 Hz, 1320 Hz and so on.

Sine vs Square Waveforms

Every audio waveform is made up of a complex combination of fundamental and harmonic frequencies. The most basic, as we mentioned, is a pure sine wave. A sine wave has only a single frequency. At the other end of the spectrum is a square wave. A square wave is made up of a fundamental frequency, then an infinite combination of odd-ordered harmonics at exponentially decreasing levels. Keep this in mind, since it will become important later as we begin to discuss distortion.

Noise Signals

Noise is a term that describes a collection of random sounds or sine waves. However, we can group a large collection of these sine waves together and use them as a tool for testing audio systems. When we want to measure the frequency response of a component like a signal processor or an amplifier, we can feed a white noise signal through the device and observe the changes it makes to the amplitudes of different frequency ranges.

White Noise – Time

DistortionYou may be asking, what exactly is white noise? It is a group of sine waves at different frequencies, arranged so the energy in each octave band is equal to the bands on either side. We can view white noise from a time domain as shown here.

White Noise – Frequency

DistortionWe can also view it from the frequency domain, as displayed in this image.

Variations In Response

The slight undulations in the frequency graph are present because it takes a long time for all different frequencies to be played and produce a ruler-flat graph. On a 1/3-octave scope, the graph would be essentially flat.

Foundation For Time And Frequency Domains

There we have our basic foundation for understanding the observation of signals in the time domain and the frequency domain. We have also had our first glimpse into how harmonic content affects what we hear. Understanding these concepts is important for anyone who works with audio equipment, and even more important to the people who install and tune that equipment. Your local mobile electronics specialist should be very comfortable with these concepts, and can use them to maximize the performance of your mobile entertainment system.

If you’ve made it this far and want to learn even more about audio distortion, click here for Part 2 of this article!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

 

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to email a link to a friend (Opens in new window) Email

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

About BestCarAudio.com

BestCarAudio.com is a showcase for the very best mobile electronics retailers in the world and a place to educate and inform interested consumers about existing and emerging technologies.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Search our Articles and Installs

Recent Customer Review

Request a Quote
Car Audio

Car Audio

Precision Audio & Tint in Bainbridge and Thomasville are truck and car audio upgrade specialists. Whether you are interested in adding Apple … Read More »

Tags

2015 2016 2017 2018 2019 2020 2021 2022 Amplifiers Android Auto Apple CarPlay Bed Covers Camlocker Chevrolet F-150 Ford Fuel Fuel Wheels GMC Grille Guards Hunter Road Force Jeep JL Audio Kenwood Leveling Kits Llumar Nitto Pioneer Radios RAM Ranch Hand ReadyLift Rockford Fosgate Rough Country Speakers Step Bars Subwoofers Toolboxes Toyota TrailFX Undercover WeatherTech Westin Window Tint Wrangler
A car running in a snowy parking lot at night with its headlights on

Understanding Bypass Modules and Data Interfaces in Remote Starter Systems

 By BestCarAudio.com Leave a Comment

Remote car starters have become one of the most sought-after upgrades for vehicle owners who want convenience, comfort, … [Read More...]

A scale with a speaker set on one side, and an amplifier on the other side, it is on top of a car and balanced in the middle

How Much Power Do You Really Need in a Car Audio System?

 By BestCarAudio.com Leave a Comment

One of the most common questions among car audio enthusiasts is, “How much amplifier power do I really need?” It’s a … [Read More...]

A pinnacle autosound speaker system

The Anatomy of a Clean Car Audio Installation: What Sets the Pros Apart

 By BestCarAudio.com Leave a Comment

When most people think about upgrading their car audio system, they focus on equipment: better speakers, a more powerful … [Read More...]

A confused looking woman sitting in the drivers seat of a car as it is driving down a road

Factory Sound vs. Aftermarket Upgrades: What You’re Really Missing

 By BestCarAudio.com Leave a Comment

For most vehicle owners, the factory-installed sound system is just another checkbox on the feature list. It might … [Read More...]

A cool futuristic looking Mercedes car in an audio shop

A Brief History of CAN Bus in Automotive Applications

 By BestCarAudio.com Leave a Comment

The Controller Area Network, or CAN bus, is a communications protocol designed to let electronic control units (ECUs) … [Read More...]

Bainbridge Location


Get Directions to Precision Audio's Bainbridge Location
Address:
909 Dothan Road, Bainbridge, GA 39817
Phone: 229-246-2111
Secondary phone: 229-246-3888
Email: salesstaff@precisionga.com

Opening Hours:
Monday : 8:30 am – 5:30 pm
Tuesday : 8:30 am – 5:30 pm
Wednesday : 8:30 am – 5:30 pm
Thursday : 8:30 am – 5:30 pm
Friday : 8:30 am – 5:30 pm
Saturday : Closed
Sunday : Closed

Thomasville Location


Get Directions to Precision Audio's Thomasville Location
Address:
12588 US Highway 319 N., Thomasville, GA 31757
Phone: 229-233-5001
Email: thomasville@precisionga.com

Opening Hours:
Monday : 8:30 am – 5:30 pm
Tuesday : 8:30 am – 5:30 pm
Wednesday : 8:30 am – 5:30 pm
Thursday : 8:30 am – 5:30 pm
Friday : 8:30 am – 5:30 pm
Saturday : Closed
Sunday : Closed

MESA retailer

Copyright © 2025 Precision Audio & Tint · Privacy Policy · Website by 1sixty8 media, inc. · Log in